صورة غلاف أمازون
صورة من Amazon.com
صورة الغلاف المخصصة
صورة الغلاف المخصصة

Mapping texts : computational text analysis for the social sciences / Dustin S. Stoltz, Marshall A. Taylor.

بواسطة:المساهم (المساهمين):نوع المادة : نصنصالسلاسل:Computational social science seriesتفاصيل النشر:New York, NY : Oxford University Press, [2023]وصف:pages cmنوع المحتوى:
  • text
نوع الوسائط:
  • unmediated
نوع الناقل:
  • volume
تدمك:
  • 9780197756881
الموضوع:تنسيقات مادية إضافية:Online version:: Mapping textsتصنيف DDC:
  • 300.72/1 23/eng/20230920
تصنيف مكتبة الكونجرس:
  • H61 .S874 2023
ملخص:"Mining is the dominant metaphor in computational text analysis. When mining texts, the implied assumption is that analysts can find kernels of truth-they just have to sift through rubbish first. In this book, Stoltz and Taylor encourage text analysts to work with a different metaphor in mind: that of mapping. When mapping texts, the goal is not necessarily to find these meaningful needles in the haystack, but instead to create reductions of the text to document patterns. Just like with cartographic maps, though, the type and nature of the textual map is dependent on a range of decisions on the part of the researcher. Creating reproducible workflows is therefore critical for the text analyst. Mapping Texts offers a practical introduction to computational text analysis with step-by-step guides on how to conduct actual text analysis workflows in the R statistical computing environment. The focus is on social science questions and applications, with data ranging from fake news and presidential campaigns to Star Trek and pop stars. The book walks the reader through all facets of a text analysis workflow-from understanding the theories of language embedded in text analysis all the way to more advanced and cutting-edge techniques. The book should prove useful not only to social scientists, but anyone interested in conducting text analysis projects"-- Provided by publisher.
نوع المادة:
وسوم من هذه المكتبة لا توجد وسوم لهذا العنوان في هذه المكتبة. قم بتسجيل الدخول لإضافة الأوسمة
التقييم بالنجوم
    متوسط التقييم: 0.0 (0 صوتًا)

Includes bibliographical references and index.

"Mining is the dominant metaphor in computational text analysis. When mining texts, the implied assumption is that analysts can find kernels of truth-they just have to sift through rubbish first. In this book, Stoltz and Taylor encourage text analysts to work with a different metaphor in mind: that of mapping. When mapping texts, the goal is not necessarily to find these meaningful needles in the haystack, but instead to create reductions of the text to document patterns. Just like with cartographic maps, though, the type and nature of the textual map is dependent on a range of decisions on the part of the researcher. Creating reproducible workflows is therefore critical for the text analyst. Mapping Texts offers a practical introduction to computational text analysis with step-by-step guides on how to conduct actual text analysis workflows in the R statistical computing environment. The focus is on social science questions and applications, with data ranging from fake news and presidential campaigns to Star Trek and pop stars. The book walks the reader through all facets of a text analysis workflow-from understanding the theories of language embedded in text analysis all the way to more advanced and cutting-edge techniques. The book should prove useful not only to social scientists, but anyone interested in conducting text analysis projects"-- Provided by publisher.

لا توجد تعليقات على هذا العنوان.